Modelltheorie II

Homework Sheet 9
Deadline: 03.07.2023, 14 Uhr
Unless explicitly mentioned, we work inside a sufficiently large saturated model \mathbb{U} of an ω-stable complete first-order theory T with infinite models in a fixed language \mathcal{L}.

Exercise 1 (4 Points). Let G be a definable group such that the formula " $x \in G$ " is strongly minimal. Given a definable subgroup $H \leq G$, show that either H is finite or $H=G$.

Deduce from the above that \mathbb{C} is both additively and multiplicatively connected.

Exercise 2 (7 Points). Let G be a group definable over the subset of parameters B of \mathbb{U}.
a) Show that every element of G can be written as a product of two elements, each generic over B.
b) Consider a generic element a over B. If $g \downarrow_{B} a$, show that $g \cdot a$ is generic over B, g. In particular we have $g \cdot a \downarrow_{B} g$.
c) Deduce that the product $g \cdot h$ of two elements g and h, both generic over B and with $g \downarrow_{B} h$, is again generic over B. Moreover, show that $g \cdot h \downarrow_{B} g$ and $g \cdot h \downarrow_{B} h$.
d) Suppose now that an element a of G satisfies that $g \cdot a \downarrow_{B} g$ whenever $g \downarrow_{B} a$. Conclude that a is generic over B.

Exercise 3 (9 Points). Consider the saturated model \mathbb{C} of the strongly minimal theory ACF_{0} in the language of rings, as in Exercise 3 of the homework sheet 7.
a) Given b_{1}, \ldots, b_{n} algebraically independent, let p be the type over $B=\left\{b_{1}, \ldots, b_{n}\right\}$ of maximal rank containing the definable set $X=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \mid \sum_{i=1}^{n} b_{i} \cdot x_{i}=1\right\}$. Describe explicitly the additive stabilizer $\operatorname{Stab}(p)$ of p, as a B-definable subgroup of $\left(\mathbb{C}^{n},+\right)$. What is its Morley rank and degree?

Let now $Z=\left\{(x, y) \in \mathbb{C}^{2} \mid y=x^{2}\right\}$ and q its unique type of maximal rank over \emptyset. Notice that q is stationary. Set $H=\operatorname{Stab}(q)$ and H^{0} its connected component.
b) Given an element (g, h) of H^{0} generic over a realization (a, b) of q, which algebraic equation does (g, h) satisfy over (a, b) ?
c) Conclude that H^{0} is trivial, using that H^{0} is connected.

Hint: Take two suitable elements of H^{0} over (a, b).
d) Is H trivial?

Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter im Fach 3.07 im Keller des mathematischen Instituts.

