Modelltheorie II

Homework Sheet 8
Deadline: 26.06.2023, 14 Uhr
Unless explicitly mentioned, we work inside a sufficiently large saturated model \mathbb{U} of an ω-stable complete first-order theory T with infinite models in a fixed language \mathcal{L}.

Exercise 1 (6 Points). Consider a subset C of \mathbb{U} and a C-indiscernible sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ which is also C-independent.
a) Given $B \supset C$ with $B \downarrow_{C}\left\{a_{n}\right\}_{n \in \mathbb{N}}$, show that $a_{1}, \ldots, a_{n} \equiv_{B} a_{m_{1}}, \ldots, a_{m_{n}}$ for all pairwise distinct m_{1}, \ldots, m_{n}.
b) Does the above hold in the random graph, setting $A \downarrow_{C} B$ if and only if $A \cap B \subset C$?

Exercise 2 (7 Points). Consider a definable group G acting definably on a definable set X.
a) Given an arbitrary (non-empty) subset S of X, show that there are s_{1}, \ldots, s_{n} in S such that for all $g \in G$

$$
g \star s=s \text { for all } s \text { in } S \Longleftrightarrow g \star s_{i}=s_{i} \text { for } i=1, \ldots, n .
$$

b) Compute the rank $\operatorname{RM}\left(\mathrm{GL}_{n}(\mathbb{C})\right)$ in the strongly minimal field \mathbb{C}, where $\mathrm{GL}_{n}(\mathbb{C})$ is the subset of the square $n \times n$-matrices $\operatorname{Mat}_{n \times n}(\mathbb{C})$ consisting of the regular ones.
c) Let now S be the collection of strictly upper triangular matrices in Mat ${ }_{n \times n}(\mathbb{C})$ (so each element of S is nilpotent!). Find an explicit set of elements s_{i} as in (a) for the action of $\mathrm{GL}_{n}(\mathbb{C})$ on $\operatorname{Mat}_{n \times n}(\mathbb{C})$ by conjugation.

Exercise 3 (7 Points).

a) Consider a fixed algebraic closure $K^{a l g}$ of a field K of characteristic different from 2. Show that the number of intermediate fields $K \subset L \subset K^{\text {alg }}$ of degree $[L: K] \leq 2$ equals the index $\left(K^{*}:\left(K^{*}\right)^{2}\right)$ of the squares.

Consider now an ultraproduct $K=\prod_{\mathcal{U}} \mathbb{F}_{p}$ with respect to a non-principal ultrafilter \mathcal{U} on the set P of prime numbers, where we view each finite field \mathbb{F}_{p} as an $\mathcal{L}_{\text {ring }}$-structure.
b) Determine the characteristic of K and show that the underlying additive group $(K,+)$ is connected.
c) Is the underlying multiplicative group $\left(K^{*}, \cdot\right)$ connected?

Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter im Fach 3.07 im Keller des mathematischen Instituts.

