Modelltheorie II

Homework Sheet 5

Deadline: 05.06.2023, 14 Uhr

Throughout, we consider some sufficiently large cardinal $\kappa \geq \aleph_0$ and a strongly κ -homogeneous κ -saturated model \mathbb{U} of a complete first-order theory T with infinite models in a fixed language \mathcal{L} .

Exercise 1 (5 Points). Assume that for every definable subset X in \mathbb{U} there exists a smallest algebraically closed subset A of parameters over which X is definable.

Show that T has weak elimination of imaginaries.

Hint: What is the cardinality of $acl(A_0)$ for A_0 finite?

Exercise 2 (5 Points). Given an interpretable equivalence relation F without parameters on some cartesian product of imaginary sorts, show that there is 0-definable in \mathcal{L} equivalence relation E such that every class modulo F is interdefinable with an imaginary in the sort S_E .

Deduce that T^{eq} has uniform elimination of imaginaries.

Exercise 3 (10 Points). Consider an indiscernible sequence $(a_n)_{n \in \mathbb{Z}}$ of tuples of some fixed length. Given two non-empty finite subsets I and J of \mathbb{Z} , we say that $I \ll J$ if

$$\max I < \min J.$$

a) Show that the kernel of the sequence

$$K = \bigcup_{\substack{I,J \ \subset \ \mathbb{Z}\\ \text{finite}}} \operatorname{acl}^{\operatorname{eq}}(\{a_i\}_{i \in I}) \cap \operatorname{acl}^{\operatorname{eq}}(\{a_j\}_{j \in J})$$

equals $\operatorname{acl}^{\operatorname{eq}}(\{a_n\}_{n<0}) \cap \operatorname{acl}^{\operatorname{eq}}(\{a_m\}_{m>0}).$

Hint: Automorphisms.

b) Show that the kernel is the largest subset of $\operatorname{acl}^{\operatorname{eq}}(\{a_n\}_{n\in\mathbb{Z}})$ over which the sequence is indiscernible.

Hint: Every sequence of tuples of the original a_n 's, ordered increasingly, is again indiscernible.

We now assume that T is the theory of infinite sets in the empty language.

- c) Construct a non-constant indiscernible sequence, each member consisting of a pair of real elements, whose kernel is not trivial, that is, the kernel is not contained in $acl^{eq}(\emptyset)$.
- d) In the sequence $\{a_n\}_{n\in\mathbb{Z}}$ obtained in c), does $\operatorname{tp}(a_1/K, a_0)$ fork over K?

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.07 IM KELLER DES MATHEMATISCHEN INSTITUTS.