Modelltheorie II Homework Sheet 4

Deadline: 22.05.2023, 14 Uhr

Exercise 1 (4 Points). Show that the theory DLO of dense linear orders without endpoints eliminates finite imaginaries.

Exercise 2 (10 Points). For $\kappa \geq \aleph_0$ sufficiently large, consider a κ -saturated κ -strongly homogeneous model \mathbb{U} of a complete first-order theory T with infinite models in a fixed language \mathcal{L} .

- a) Given a real element a and a subset B of real parameters in \mathbb{U} such that a is algebraic over B in the corresponding expansion \mathbb{U}^{eq} as an \mathcal{L}^{eq} -structure, show that the \mathcal{L} -type tp(a/B) contains an algebraic formula.
- b) Suppose now that f is a partial elementary map with $|\text{Dom}(f)| < \kappa$. Given an imaginary element α in \mathbb{U}^{eq} , show that there is an extension \widehat{f} of f to a partial elementary map of \mathbb{U}^{eq} whose domain contains α .

Deduce that the groups $\operatorname{Aut}(\mathbb{U})$ and $\operatorname{Aut}(\mathbb{U}^{eq})$ are isomorphic.

c) Let X an infinite interpretable subset (for some finite cartesian product of sorts in \mathbb{U}^{eq}). Show that $|X(\mathbb{U}^{eq})| \geq \kappa$, without assuming that compactness holds in many-sorted logic.

We assume now that T is the theory of the field of real numbers in the ring language.

d) Consider the following equivalence relation on U:

$$x \simeq y \iff 0 \le |x - y| < \frac{1}{n}$$
 for all n in \mathbb{N} .

Show that \simeq is not definable.

e) If we now restrict \simeq to the definable interval X = [0, 1], what is the cardinality of $X(\mathbb{U})/\simeq$?

Exercise 3 (6 Points). For $\kappa \geq \aleph_0$ sufficiently large, consider a κ -saturated κ -strongly homogeneous model \mathbb{U} of a complete first-order theory T with infinite models in a fixed language \mathcal{L} .

- a) Given an \mathcal{L} -substructure \mathcal{M} of \mathbb{U} , denote by \mathcal{M}^{eq} the collection of imaginaries with a representative in \mathcal{M} . Show that \mathcal{M}^{eq} is an \mathcal{L}^{eq} -substructure of \mathbb{U}^{eq} .
- b) Show that \mathcal{M}^{eq} is an elementary substructure of the model \mathbb{U}^{eq} of T^{eq} if $\mathcal{M} \preceq \mathbb{U}$.
- c) Given a subset A of \mathbb{U} , show (without assuming compactness in many-sorted logic) that

$$\operatorname{acl}^{\operatorname{eq}}(A) = \bigcap_{\substack{\mathcal{M} \preceq \mathbb{U} \\ A \subset \mathcal{M}}} \mathcal{M}^{eq}.$$

Hint: Write a suitable partial type in infinitely many real variables.

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.07 IM KELLER DES MATHEMATISCHEN INSTITUTS.