Modelltheorie II

Homework Sheet 2
Deadline: 08.05.2023, 14 Uhr
Exercise 1 (5 Points). Consider the language $\mathcal{L}=\{E\}$ with E a binary relation symbol as well as the \mathcal{L}-theory T whose models are exactly the \mathcal{L}-structures in which E is an equivalence relation with exactly one class of size n for every natural number $n \geq 1$.
a) Compute the maximal Cantor-Bendixson rank of every type in the compact Hausdorff space $S_{1}\left(\mathcal{M}_{0}\right)$, with \mathcal{M}_{0} the prime model of T.
b) Compute the Morley rank and degree of the formula $(x \doteq x)$.
c) Consider now an \aleph_{0}-saturated model \mathcal{M} of T and a type p over M of maximal Morley rank. Given a proper elementary extension \mathcal{N} of \mathcal{M}, describe explicitly all the extensions q of p over N with $\operatorname{RM}(q)<\operatorname{RM}(p)$.

Exercise 2 (11 Points). We work inside a sufficiently saturated infinite ambient model \mathbb{U} of a complete first-order theory T with infinite models in a fixed language \mathcal{L}.
a) Given a subset A of \mathbb{U} and a type $p(\bar{x})$ over A, show that $\mathrm{CB}(p) \leq \mathrm{RM}(p)$, computing the Cantor-Bendixson rank in the compact Hausdorff space $S_{|\bar{x}|}(A)$.
b) Assume the instance $\varphi[\bar{x}, \bar{a}]$ has Morley rank α and is α-indecomposable. Show that so is $\varphi[\bar{x}, \bar{b}]$ for every realization \bar{b} of $\operatorname{tp}(\bar{a})$.

Let now \mathcal{M} be an \aleph_{0}-saturated elementary substructure of \mathbb{U}.
c) Assume now that the instance $\varphi[\bar{x}, \bar{a}]$, with \bar{a} in M, has Morley rank α and Morley degree n. Show that there is a decomposition of $\varphi[\bar{x}, \bar{a}]$ into n disjoint instances with parameters in M, each α-indecomposable of Morley rank α.
d) Conclude that every type over M of Morley rank α is stationary, that is, of Morley degree 1 .
e) Show by transfinite induction that $\operatorname{RM}(p)=\mathrm{CB}(p)$, with $\mathrm{CB}(p)$ the Cantor-Bendixson rank of p computed in $S_{|\bar{x}|}(\mathcal{M})$.
Hint: Every formula belongs to a type with the same Morley rank.
Exercise 3 (4 Points). A natural number m is a prefix of n in \mathbb{N} if m consists of the first digits of n, that is, if $n=m \cdot 10^{k}+r$ for some $0 \leq r<10^{k}$ in \mathbb{N}.

Consider now an infinite subset $A \subset \mathbb{N}$ closed under removing last digits, that is, whenever n belongs to A and has last digit ℓ, then $\frac{n-\ell}{10}$ is also in A. Show that A contains an infinite sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of distinct elements such that a_{m} is a prefix of a_{n} if $m \leq n$.

Hint: Trees.
Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter im Fach 3.07 im Keller des mathematischen Instituts.

