Modelltheorie II

Homework Sheet 11
Deadline: 17.07.2023, 14 Uhr

Last Homework Sheet

Unless explicitly mentioned, we work inside a sufficiently large saturated model \mathbb{U} of an ω-stable complete first-order theory T with infinite models in a fixed language \mathcal{L}.
Exercise 1 (10 Points).
a) Let p and q be stationary types over a subset of parameters C of \mathbb{U}. A pair (a, b) with a realizing p and b realizing q is an independent pair if $a \downarrow_{C} b$. Show that any two independent pairs have the same type over C. In particular, the type of an independent pair is unique (and we denote it by $p \otimes q$).
b) Given now a subset $C \subset D \subset \mathbb{U}$, consider p^{\prime}, resp. q^{\prime}, the unique non-forking extension of p, resp. q, to D. Show that $p^{\prime} \otimes q^{\prime}$ is the unique non-forking extension of $p \otimes q$ to D. In particular, the type $p \otimes q$ is stationary.
Consider now two definable groups G and H without parameters. An independent pair for $G \times H$ over the subset A of parameters is a pair (g, h) in $G \times H$ realizing $p \otimes q$, where p is the generic type of G^{0} over A and q is the generic type of H^{0} over A.
c) Given an independent pair (g, h) of $G \times H$, show using (a) that $G^{0} \times H^{0} \subset \operatorname{Stab}(g, h)$.
d) Deduce that the independent pair (g, h) over A is a generic element of $G \times H$ over A.
e) Conclude that $G \times H$ is connected if both G and H are.

Exercise 2 (10 Points). Consider a definable group G without parameters. A non-empty subset X of G (possibly non-definable) is indecomposable if, whenever $H \leq G$ is a definable subgroup (with parameters) such that X intersects non-trivially two different cosets of H, then X intersects non-trivially infinitely many cosets of H.
a) Determine explicitly all indecomposable subsets of the multiplicative group \mathbb{C}^{*} (in the strongly minimal theory ACF_{0}). Deduce from this description that a non-empty subset of an indecomposable subset need not be indecomposable.
b) Show that a definable subgroup of G is indecomposable if and only if it is connected.

A non-empty subset X admits an irredundant indecomposable decomposition if $X=X_{1} \cup \ldots \cup X_{n}$, where each $X_{i} \neq \emptyset$ is indecomposable and no subunion $\bigcup_{j \in J} X_{i_{j}}$, with $|J| \geq 2$, is indecomposable.
c) Show that an irredundant indecomposable decomposition $X=X_{1} \cup \ldots \cup X_{n}$ is a disjoint union (so $X_{i} \cap X_{j}=\emptyset$ for all $i \neq j$).
Hint: If Y and Z are both indecomposable with $Y \cap Z \neq \emptyset$, what do we conclude about $Y \cup Z$?
d) Show that any two irredundant indecomposable decompositions of X are equal up to permutation, that is, if $X=X_{1} \cup \ldots \cup X_{n}$ and $X=Y_{1} \cup \cdots \cup Y_{m}$ are irredundant indecomposable decompositions, then $n=m$ and for each i we have $X_{i}=Y_{\tau(i)}$ for some τ in S_{n}.

Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter im Fach 3.07 im Keller des mathematischen Instituts.

