Modelltheorie II

Homework Sheet 10 Deadline: 10.07.2023, 14 Uhr

Unless explicitly mentioned, we consider a definable group G without parameters inside a sufficiently large saturated model \mathbb{U} of an ω -stable complete first-order theory T with infinite models in a fixed language \mathcal{L} .

Exercise 1 (6 Points).

- a) Let A be a subset of parameters of U. Show that for every A-definable subset X of G, there exists a finite subset F of G such that $G = F \cdot X = \bigcup_{a \in F} g \cdot X$ or $G = F \cdot (G \setminus X)$.
- b) Consider now the collection of formulae

 $\Sigma(x) = \{x \in G\} \cup \{\neg \varphi[x, a] \mid \text{ for no finite } F \text{ in } G \text{ we have that } G = F \cdot \varphi[\mathbb{U}, a]\}_{a \in A}.$

Show that Σ is finitely consistent. How many completions does Σ have?

c) Consider now the additive group of (a sufficiently saturated extension of) the field of real numbers and set $A = \mathbb{Q}$. Does the conclusion of (a) hold for this structure?

Exercise 2 (10 Points). Let \mathcal{M} be an elementary substructure of \mathbb{U} and choose some type p in the type space $S_G(M)$.

- a) Assume that there is an *M*-definable subgroup *H* of *G* and some element *m* in *M* such that *p* contains the formula " $x \in H \cdot m$ ". Show that $\operatorname{Stab}(p) \leq H$.
- b) Assume now that $\operatorname{RM}(p) = \operatorname{RM}(\operatorname{Stab}(p))$. Deduce from the above that the type p contains the formula " $x \in \operatorname{Stab}(p)^0 \cdot m$ " for some m in M.

Hint: Redo the proof of $RM(Stab(p)) \leq RM(p)$ and use Exercise 1 of the Homework Sheet 7.

- c) Deduce from the above that $\operatorname{Stab}(p)$ is connected and p is the unique generic type of some M-definable coset of its stabilizer, whenever $\operatorname{RM}(p) = \operatorname{RM}(\operatorname{Stab}(p))$.
- d) Suppose now that p_0 is a type over some subset $A = \operatorname{acl}^{eq}(A) \subset M$ such that $\operatorname{RM}(p_0) = \operatorname{RM}(\operatorname{Stab}(p_0))$. Conclude that $\operatorname{Stab}(p_0)$ is connected and p_0 is the unique generic type of some A-definable coset of its stabilizer,

Hint: Exercise 2 (a) of the Homework Sheet 7.

Exercise 3 (4 Points). A structure \mathcal{N} in some first-order countable language \mathcal{L}_0 is *definable* in \mathbb{U} with parameters in A if there exists some \mathcal{L} -definable subset X of some cartesian product of \mathbb{U} with parameters in A such that $N = X(\mathbb{U})$. Furthermore, we require that for every function (resp. relation) symbol f (resp. R) in \mathcal{L}_0 there is a subset Def(f) (resp. Def(R)) which is \mathcal{L} -definable over A such that for every a_1, \ldots, a_n and b from N, we have

$$\mathcal{N} \models f(a_1, \dots, a_n) = b \iff \mathbb{U} \models (a_1, \dots, a_n, b) \in \mathrm{Def}(f),$$

Please turn over the page!!

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.07 IM KELLER DES MATHEMATISCHEN INSTITUTS.

 $\operatorname{resp.}$

$$\mathcal{N} \models R(a_1, \dots, a_n) \iff \mathbb{U} \models (a_1, \dots, a_n) \in \mathrm{Def}(R).$$

a) Show that there exists a countable subset of parameters C of \mathbb{U} such that for every \mathcal{L}_0 -formula $\varphi[x_1, \ldots, x_n]$ there is an instance $\psi_{\varphi}[x_1, \ldots, x_n, d]$ of an \mathcal{L} -formula, with d a tuple from $C \cup A$, such that for all a_1, \ldots, a_n from N we have

$$\mathcal{N} \models \varphi[a_1, \dots, a_n] \iff \mathbb{U} \models \psi_{\varphi}[a_1, \dots, a_n, d].$$

What does C consist of?

Hint: Induction on the complexity of φ .

b) Deduce that the \mathcal{L}_0 -theory Th(\mathcal{N}) is ω -stable.