Modelltheorie II

Homework Sheet 10
Deadline: 10.07.2023, 14 Uhr
Unless explicitly mentioned, we consider a definable group G without parameters inside a sufficiently large saturated model \mathbb{U} of an ω-stable complete first-order theory T with infinite models in a fixed language \mathcal{L}.

Exercise 1 (6 Points).
a) Let A be a subset of parameters of \mathbb{U}. Show that for every A-definable subset X of G, there exists a finite subset F of G such that $G=F \cdot X=\bigcup_{g \in F} g \cdot X$ or $G=F \cdot(G \backslash X)$.
b) Consider now the collection of formulae

$$
\Sigma(x)=\{x \in G\} \cup\{\neg \varphi[x, a] \mid \text { for no finite } F \text { in } G \text { we have that } G=F \cdot \varphi[\mathbb{U}, a]\}_{a \in A} .
$$

Show that Σ is finitely consistent. How many completions does Σ have?
c) Consider now the additive group of (a sufficiently saturated extension of) the field of real numbers and set $A=\mathbb{Q}$. Does the conclusion of (a) hold for this structure?

Exercise 2 (10 Points). Let \mathcal{M} be an elementary substructure of \mathbb{U} and choose some type p in the type space $S_{G}(M)$.
a) Assume that there is an M-definable subgroup H of G and some element m in M such that p contains the formula " $x \in H \cdot m$ ". Show that $\operatorname{Stab}(p) \leq H$.
b) Assume now that $\operatorname{RM}(p)=\operatorname{RM}(\operatorname{Stab}(p))$. Deduce from the above that the type p contains the formula " $x \in \operatorname{Stab}(p)^{0} \cdot m$ " for some m in M.
Hint: Redo the proof of $\operatorname{RM}(\operatorname{Stab}(p)) \leq \operatorname{RM}(p)$ and use Exercise 1 of the Homework Sheet 7 .
c) Deduce from the above that $\operatorname{Stab}(p)$ is connected and p is the unique generic type of some M-definable coset of its stabilizer, whenever $\operatorname{RM}(p)=\operatorname{RM}(\operatorname{Stab}(p))$.
d) Suppose now that p_{0} is a type over some subset $A=\operatorname{acl}^{e q}(A) \subset M$ such that $\operatorname{RM}\left(p_{0}\right)=$ $\operatorname{RM}\left(\operatorname{Stab}\left(p_{0}\right)\right)$. Conclude that $\operatorname{Stab}\left(p_{0}\right)$ is connected and p_{0} is the unique generic type of some A-definable coset of its stabilizer,

Hint: Exercise 2 (a) of the Homework Sheet 7.
Exercise 3 (4 Points). A structure \mathcal{N} in some first-order countable language \mathcal{L}_{0} is definable in \mathbb{U} with parameters in A if there exists some \mathcal{L}-definable subset X of some cartesian product of \mathbb{U} with parameters in A such that $N=X(\mathbb{U})$. Furthermore, we require that for every function (resp. relation) symbol $f($ resp. $R)$ in \mathcal{L}_{0} there is a subset $\operatorname{Def}(f)($ resp. $\operatorname{Def}(R))$ which is \mathcal{L}-definable over A such that for every a_{1}, \ldots, a_{n} and b from N, we have

$$
\mathcal{N} \models f\left(a_{1}, \ldots, a_{n}\right)=b \Longleftrightarrow \mathbb{U} \models\left(a_{1}, \ldots, a_{n}, b\right) \in \operatorname{Def}(f),
$$

Please turn over the page!!
Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter im Fach 3.07 im Keller des mathematischen Instituts.
resp.

$$
\mathcal{N} \models R\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow \mathbb{U} \models\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{Def}(R)
$$

a) Show that there exists a countable subset of parameters C of \mathbb{U} such that for every \mathcal{L}_{0}-formula $\varphi\left[x_{1}, \ldots, x_{n}\right]$ there is an instance $\psi_{\varphi}\left[x_{1}, \ldots, x_{n}, d\right]$ of an \mathcal{L}-formula, with d a tuple from $C \cup A$, such that for all a_{1}, \ldots, a_{n} from N we have

$$
\mathcal{N} \vDash \varphi\left[a_{1}, \ldots, a_{n}\right] \Longleftrightarrow \mathbb{U} \models \psi_{\varphi}\left[a_{1}, \ldots, a_{n}, d\right] .
$$

What does C consist of?
Hint: Induction on the complexity of φ.
b) Deduce that the \mathcal{L}_{0}-theory $\operatorname{Th}(\mathcal{N})$ is ω-stable.

